Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Mol Graph Model ; 122: 108487, 2023 07.
Article in English | MEDLINE | ID: covidwho-2292448

ABSTRACT

Ongoing global pandemic caused by coronavirus (COVID-19) requires urgent development of vaccines, treatments, and diagnostic tools. Open reading frame 3a (ORF3a) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered to be a potential drug target for COVID-19 treatment. ORF3a is an accessory protein that plays a significant role in virus-host interactions and in facilitating host immune responses. Using putrescine, spermidine and spermine, an aliphatic polyamine for the activity suppression of ORF3a appears to be a promising approach in finding new targets for drug design. In this study, we explored the possible binding poses of polyamines to the ORF3a protein using a combination of various computational approaches i.e. pocket prediction, blind and site-specific molecular docking, molecular dynamics and ligand flooding simulations. The results showed that the tip of cytoplasmic domain and the upper tunnel of transmembrane domain of ORF3a provide a suitable binding site specific for the polyamines. MD simulations revealed the stability of spermidine binding in the upper tunnel pocket of ORF3a through salt bridge and hydrogen bond interactions between the amine groups of the ligand and negatively charged residues of ORF3a. These findings can be helpful in designing new therapeutic drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Docking Simulation , Polyamines , Open Reading Frames , Spermidine , COVID-19 Drug Treatment , Ligands
2.
Biophys Chem ; 287: 106829, 2022 08.
Article in English | MEDLINE | ID: covidwho-1850725

ABSTRACT

The viral main protease (Mpro) from a novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a key enzyme essential for viral replication and has become an attractive target for antiviral drug development. The Mpro forms a functional dimer and exhibits a pH-dependent enzyme activity and dimerization. Here, we report a molecular dynamics (MD) investigation to gain insights into the structural stability of the enzyme dimer at neutral and acidic pH. Our data shows larger changes in structure of the protein with the acidic pH than that with the neutral pH. Structural analysis of MD trajectories reveals a substantial increase in intersubunit separation, the loss of domain contacts, binding free energy and interaction energy of the dimer which implies the protein instability and tendency of dimer dissociation at acidic pH. The loss in the interaction energy is mainly driven by electrostatic interactions. We have identified the intersubunit hydrogen-bonding residues involved in the decreased dimer stability. These findings may be helpful for rational drug design and target evaluation against COVID-19.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , SARS-CoV-2 , COVID-19/metabolism , COVID-19/virology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Humans , Hydrogen-Ion Concentration , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL